Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Eur J Med Chem ; 238: 114508, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1982957

ABSTRACT

The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8-S43 with the enzymatic IC50 value of 10.76 µM. Further structure-based drug design and synthetic optimization uncovered compounds F8-B6 and F8-B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 µM and 1.55 µM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8-B6 was a reversible covalent inhibitor of Mpro. Besides, F8-B6 showed low cytotoxicity with CC50 values of more than 100 µM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Furans , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Furans/chemistry , Furans/pharmacology , Humans , Hydrazines/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
2.
Org Lett ; 24(4): 995-999, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1655437

ABSTRACT

Thapsigargin (Tg) is a potent SERCA pump inhibitor with the potential to treat cancer and COVID-19. We have extended the scope of the asymmetric allenic Pauson-Khand reaction to furan-tethered allene-ynes, a stereoconvergent transformation affording the 5,7,5-ring system of Tg in good yields and high enantioselectivity. Computational studies of the oxidative cyclization step show that the furan and chloroacetate groups contribute to this high selectivity.


Subject(s)
Rhodium/chemistry , Thapsigargin/analogs & derivatives , Thapsigargin/chemistry , Catalysis , Chloroacetates/chemistry , Cyclization , Furans/chemistry , Models, Molecular , Molecular Structure , Stereoisomerism , Thapsia/chemistry , COVID-19 Drug Treatment
3.
Molecules ; 26(12)2021 Jun 16.
Article in English | MEDLINE | ID: covidwho-1282539

ABSTRACT

Furan-2-carboxylic acid was used as a starting material for the synthesis of dehydro-homopilopic acid. Esterification, hydrogenation and enzymatic hydrolysis followed by the reduction of Weinreb amides and a single-step attachment of a 1-methyl-imidazole residue allowed for the concise synthesis of both enantiomers of pilocarpine.


Subject(s)
4-Butyrolactone/analogs & derivatives , Furans/chemistry , Pilocarpine/chemical synthesis , 4-Butyrolactone/chemical synthesis , Amides/chemistry , Carboxylic Acids/chemistry , Esterification , Hydrogenation , Hydrolysis , Pilocarpine/chemistry , Stereoisomerism
4.
Molecules ; 26(4)2021 Feb 10.
Article in English | MEDLINE | ID: covidwho-1110462

ABSTRACT

Currently, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has infected people among all countries and is a pandemic as declared by the World Health Organization (WHO). SARS-CoVID-2 main protease is one of the therapeutic drug targets that has been shown to reduce virus replication, and its high-resolution 3D structures in complex with inhibitors have been solved. Previously, we had demonstrated the potential of natural compounds such as serine protease inhibitors eventually leading us to hypothesize that FDA-approved marine drugs have the potential to inhibit the biological activity of SARS-CoV-2 main protease. Initially, field-template and structure-activity atlas models were constructed to understand and explain the molecular features responsible for SARS-CoVID-2 main protease inhibitors, which revealed that Eribulin Mesylate, Plitidepsin, and Trabectedin possess similar characteristics related to SARS-CoVID-2 main protease inhibitors. Later, protein-ligand interactions are studied using ensemble molecular-docking simulations that revealed that marine drugs bind at the active site of the main protease. The three-dimensional reference interaction site model (3D-RISM) studies show that marine drugs displace water molecules at the active site, and interactions observed are favorable. These computational studies eventually paved an interest in further in vitro studies. Finally, these findings are new and indeed provide insights into the role of FDA-approved marine drugs, which are already in clinical use for cancer treatment as a potential alternative to prevent and treat infected people with SARS-CoV-2.


Subject(s)
Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , SARS-CoV-2/physiology , Serine Proteinase Inhibitors/pharmacology , Catalytic Domain , Depsipeptides/chemistry , Depsipeptides/pharmacology , Drug Repositioning , Furans/chemistry , Furans/pharmacology , Humans , Ketones/chemistry , Ketones/pharmacology , Models, Molecular , Molecular Docking Simulation , Peptides, Cyclic , Quantitative Structure-Activity Relationship , SARS-CoV-2/drug effects , Serine Proteinase Inhibitors/chemistry , Trabectedin/chemistry , Trabectedin/pharmacology , Viral Proteins/antagonists & inhibitors , Virus Replication/drug effects
5.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article in English | MEDLINE | ID: covidwho-738379

ABSTRACT

Remdesivir has reported efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and in vivo Drug-drug interactions limit therapeutic options in transplant patients. Remdesivir and its metabolite GS-441524 are excreted principally in urine. In intensive care unit (ICU) settings, in which multiple-organ dysfunctions can occur rapidly, hemodialysis may be a viable option for maintaining remdesivir treatment, while improving tolerance, by removing both remdesivir's metabolite (GS-441524) and sulfobutylether ß-cyclodextrin sodium (SEBCD). Additional studies may prove informative, particularly in the evaluations of therapeutic options for coronavirus disease 2019 (COVID-19).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Coronavirus Infections/therapy , Furans/urine , Pneumonia, Viral/therapy , Pyrroles/urine , Triazines/urine , beta-Cyclodextrins/urine , Adenosine/analogs & derivatives , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Alanine/administration & dosage , Alanine/adverse effects , Alanine/chemistry , Alanine/metabolism , Antiviral Agents/adverse effects , Antiviral Agents/chemistry , Antiviral Agents/metabolism , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/surgery , Coronavirus Infections/virology , Drug Interactions , Furans/adverse effects , Furans/chemistry , Humans , Intensive Care Units , Lung Transplantation , Multiple Organ Failure , Pandemics , Pneumonia, Viral/surgery , Pneumonia, Viral/virology , Pyrroles/adverse effects , Pyrroles/chemistry , Renal Dialysis , SARS-CoV-2 , Transplant Recipients , Triazines/adverse effects , Triazines/chemistry , beta-Cyclodextrins/adverse effects , beta-Cyclodextrins/chemistry , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL